De novo mutations across 1,465 diverse genomes reveal novel mutational insights and reductions in the Amish founder population

Author:

Kessler Michael D.,Loesch Douglas P.,Perry James A.,Heard-Costa Nancy L.,Cade Brian E.,Wang Heming,Daya Michelle,Ziniti John,Datta Soma,Celedón Juan C,Soto-Quiros Manuel E.,Avila Lydiana,Weiss Scott T.,Barnes Kathleen,Redline Susan S.,Vasan Ramachandran S.,Johnson Andrew D.,Mathias Rasika A.,Hernandez Ryan,Wilson James G.,Nickerson Deborah A.,Abecasis Goncalo,Browning Sharon R.,Zoellner Sebastian,O’Connell Jeffrey R.,Mitchell Braxton D.,O’Connor Timothy D.,

Abstract

Abstractde novo Mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) program, we directly estimate and analyze DNM counts, rates, and spectra from 1,465 trios across an array of diverse human populations. Using the resulting call set of 86,865 single nucleotide DNMs, we find a significant positive correlation between local recombination rate and local DNM rate, which together can explain up to 35.5% of the genome-wide variation in population level rare genetic variation from 41K unrelated TOPMed samples. While genome-wide heterozygosity does correlate weakly with DNM count, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, interestingly, we do find significantly fewer DNMs in Amish individuals compared with other Europeans, even after accounting for parental age and sequencing center. Specifically, we find significant reductions in the number of T→C mutations in the Amish, which seems to underpin their overall reduction in DNMs. Finally, we calculate near-zero estimates of narrow sense heritability (h2), which suggest that variation in DNM rate is significantly shaped by non-additive genetic effects and/or the environment, and that a less mutagenic environment may be responsible for the reduced DNM rate in the Amish.SignificanceHere we provide one of the largest and most diverse human de novo mutation (DNM) call sets to date, and use it to quantify the genome-wide relationship between local mutation rate and population-level rare genetic variation. While we demonstrate that the human single nucleotide mutation rate is similar across numerous human ancestries and populations, we also discover a reduced mutation rate in the Amish founder population, which shows that mutation rates can shift rapidly. Finally, we find that variation in mutation rates is not heritable, which suggests that the environment may influence mutation rates more significantly than previously realized.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites;Genetics,1996

2. Human genome sequence variation and the influence of gene history, mutation and recombination

3. Mutation rate variation in the mammalian genome;Current opinion in genetics & development,2003

4. Direct estimates of human per nucleotide mutation rates at 20 loci causing mendelian diseases

5. Advanced paternal age: How old is too old?

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. De Novo Mutation Rate Estimation in Wolves of Known Pedigree;Molecular Biology and Evolution;2019-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3