Reduced responsiveness of the reward system underlies tolerance to cannabis impairment in chronic users

Author:

Mason N.LORCID,Theunissen E.L.,Hutten N.R.P.W.ORCID,Tse D.H.Y.ORCID,Toennes S.W.,Jansen J.F.A.ORCID,Stiers P.ORCID,Ramaekers J.G.ORCID

Abstract

AbstractCannabis is the most commonly used illicit drug in the world. However due to a changing legal landscape, and rising interest in therapeutic utility, there is an increasing trend in (long-term) use and possibly, cannabis impairment. Importantly, a growing body of evidence suggests regular cannabis users develop tolerance to the impairing, as well as the rewarding, effects of the drug. However, the neuroadaptations that may underlie cannabis tolerance remain unclear. Therefore, this double-blind, randomized, placebo controlled, cross-over study assessed the acute influence of cannabis on brain and behavioral outcomes in two distinct cannabis user groups. Twelve occasional (OUs) and 12 chronic (CUs) cannabis users received acute doses of cannabis (300 μg/kg THC) and placebo, and underwent ultra-high field functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS). In OUs, cannabis induced significant neurometabolic alterations in reward circuitry, namely decrements in functional connectivity and increments in striatal glutamate concentrations, which were associated with increases in subjective high and decreases in performance on a sustained attention task. Such changes were absent in CUs. The finding that cannabis altered circuitry and distorted behavior in OUs, but not CUs, suggests reduced responsiveness of the reward circuitry to cannabis intoxication in chronic users Taken together, the results suggest a pharmacodynamic mechanism for the development of tolerance to cannabis impairment.

Publisher

Cold Spring Harbor Laboratory

Reference61 articles.

1. UN (2018) World Drug Report 2018. United Nations publication.

2. EMCDDA (2018) European Drug Report 2018: Trends and Developments. Publications Office of the European Union, Luxemborg.

3. Cannabis use and the development of tolerance: a systematic review of human evidence;Neurosci Biobehav Rev,2018

4. Cannabis and the brain

5. Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3