Cryptic genetic variation underpins rapid adaptation to ocean acidification

Author:

Bitter M. C.ORCID,Kapsenberg L.ORCID,Gattuso J.-P.,Pfister C. A.ORCID

Abstract

AbstractGlobal climate change has intensified the need to assess the capacity for natural populations to adapt to abrupt shifts in the environment. Reductions in seawater pH constitute a conspicuous stressor associated with increasing atmospheric carbon dioxide that is affecting ecosystems throughout the world’s oceans. Here, we quantify the phenotypic and genetic modifications associated with rapid adaptation to reduced seawater pH in the marine mussel, Mytilus galloprovincialis. We reared a genetically diverse larval population in ambient and extreme low pH conditions (pHT 8.1 and 7.4) and tracked changes in the larval size and allele frequency distributions through settlement. Additionally, we separated larvae by size to link a fitness-related trait to its underlying genetic background in each treatment. Both phenotypic and genetic data show that M. galloprovincialis can evolve in response to a decrease in seawater pH. This process is polygenic and characterized by genotype-environment interactions, suggesting the role of cryptic genetic variation in adaptation to future climate change. Holistically, this work provides insight into the processes underpinning rapid evolution, and demonstrates the importance of maintaining standing variation within natural populations to bolster species’ adaptive capacity as global change progresses.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3