Computational proteogenomic identification and functional interpretation of translated fusions and micro structural variations in cancer

Author:

Lin Yen Yi,Gawronski Alexander,Hach Faraz,Li Sujun,Numanagić Ibrahim,Sarrafi Iman,Mishra Swati,McPherson Andrew,Collins Colin,Radovich Milan,Tang Haixu,Sahinalp S. Cenk

Abstract

MotivationRapid advancement in high throughput genome and transcriptome sequencing (HTS) and mass spectrometry (MS) technologies has enabled the acquisition of the genomic, transcriptomic and proteomic data from the same tissue sample. In this paper we introduce a novel computational framework which can integratively analyze all three types of omics data to obtain a complete molecular profile of a tissue sample, in normal and disease conditions. Our framework includes MiStrVar, an algorithmic method we developed to identify micro structural variants (microSVs) on genomic HTS data. Coupled with deFuse, a popular gene fusion detection method we developed earlier, MiStrVar can provide an accurate profile of structurally aberrant transcripts in cancer samples. Given the breakpoints obtained by MiStrVar and deFuse, our framework can then identify all relevant peptides that span the breakpoint junctions and match them with unique proteomic signatures in the respective proteomics data sets. Our framework's ability to observe structural aberrations at three levels of omics data provides means of validating their presence.ResultsWe have applied our framework to all The Cancer Genome Atlas (TCGA) breast cancer Whole Genome Sequencing (WGS) and/or RNA-Seq data sets, spanning all four major subtypes, for which proteomics data from Clinical Proteomic Tumor Analysis Consortium (CPTAC) have been released. A recent study on this dataset focusing on SNVs has reported many that lead to novel peptides [1]. Complementing and significantly broadening this study, we detected 244 novel peptides from 432 candidate genomic or transcriptomic sequence aberrations. Many of the fusions and microSVs we discovered have not been reported in the literature. Interestingly, the vast majority of these translated aberrations (in particular, fusions) were private, demonstrating the extensive inter-genomic heterogeneity present in breast cancer. Many of these aberrations also have matching out-of-frame downstream peptides, potentially indicating novel protein sequence and structure. Moreover, the most significantly enriched genes involved in translated fusions are cancer-related. Furthermore a number of the somatic, translated microSVs are observed in tumor suppressor genes.Contactcenksahi@indiana.edu

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3