Trans-generational effects on diapause and life-history-traits of an aphid parasitoid

Author:

K. Tougeron,M. Devogel,J. van Baaren,C. Le Lann,T. HanceORCID

Abstract

SummaryTransgenerational effects act on a wide range of insects’ life-history traits and can be involved in the control of developmental plasticity, such as diapause expression. Decrease in or total loss of winter diapause expression recently observed in some species could arise from inhibiting maternal effects. In this study, we explored transgenerational effects on diapause expression and traits in one industrial and one wild strain of the aphid parasitoidAphidius ervi. These strains were reared under short photoperiod (8:16 h LD) and low temperature (14 °C) conditions over two generations. Diapause levels, developmental times, physiological and morphological traits were measured. Diapause levels increased after one generation in the wild but not in the industrial strain. For both strains, the second generation took longer to develop than the first one. Tibia length and wing surface decreased over generations while fat content increased. A crossed-generations experiment focusing on the industrial parasitoid strain showed that offspring from mothers reared at 14 °C took longer to develop, were heavier, taller with wider wings and with more fat reserves than those from mothers reared at 20 °C (8:16 h LD). No effect of the mother rearing conditions was shown on diapause expression. Additionally to direct plasticity of the offspring, results suggest transgenerational plasticity effects on diapause expression, development time, and on the values of life-history traits. We demonstrated that populations showing low diapause levels may recover higher levels through transgenerational plasticity in response to diapause-induction cues, provided that environmental conditions are reaching the induction-thresholds specific to each population. Transgenerational plasticity is thus important to consider when evaluating how insects adapt to changing environments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3