Traction forces control cell-edge dynamics and mediate distance-sensitivity during cell polarization

Author:

Messi Zeno,Bornert Alicia,Raynaud Franck,Verkhovsky Alexander

Abstract

SUMMARYTraction forces are generated by cellular actin-myosin system and transmitted to the environment through adhesions. They are believed to drive cell motion, shape changes, and extracellular matrix remodeling [1–3]. However, most of the traction force analysis has been performed on stationary cells, investigating forces at the level of individual focal adhesions or linking them to static cell parameters such as area and edge curvature [4–10]. It is not well understood how traction forces are related to shape changes and motion, e.g. forces were reported to either increase or drop prior to cell retraction [11–15]. Here, we analyze the dynamics of traction forces during the protrusion-retraction cycle of polarizing fish epidermal keratocytes and find that forces fluctuate in concert with the cycle, increasing during the protrusion phase and reaching maximum at the beginning of retraction. We relate force dynamics to the recently discovered phenomenological rule [16] that governs cell edge behavior during keratocyte polarization: both traction forces and the probability of switch from protrusion to retraction increase with the distance from the cell center. Diminishing traction forces with cell contractility inhibitor leads to decreased edge fluctuations and abnormal polarization, while externally applied force can induce protrusion-retraction switch. These results suggest that forces mediate distance-sensitivity of the edge dynamics and ultimately organize cell-edge behavior leading to spontaneous polarization. Actin flow rate did not exhibit the same distance-dependence as traction stress, arguing against its role in organizing edge dynamics. Finally, using a simple model of actin-myosin network, we show that force-distance relationship may be an emergent feature of such networks.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3