Quorum sensing N-Acyl homoserine lactones are a new class of anti-schistosomal

Author:

Whiteland HORCID,Crusco A,Bloemberg LW,Tibble-Howlings J,Forde-Thomas JORCID,Coghlan AORCID,Murphy P. J,Hoffmann KFORCID

Abstract

AbstractBackgroundSchistosomiasis is a prevalent neglected tropical disease that affects approximately 300 million people worldwide. Its treatment is through a single class chemotherapy, praziquantel. Concerns surrounding the emergence of praziquantel insensitivity have led to a need for developing novel anthelmintics.Methodology/Principle findingsThrough evaluating and screening fourteen compounds (initially developed for anti-cancer and anti-viral projects) against Schistosoma mansoni, one of three species responsible for most cases of human schistosomiasis, a racemic N-acyl homoserine (1) demonstrated good efficacy against all intra mammalian lifecycle stages including schistosomula (EC50 = 4.7 µM), juvenile worms (EC50 = 4.3 µM) and adult worms (EC50 = 8.3 µM). To begin exploring structural activity relationships, a further 8 analogues of this compound were generated, including individual (R)- and (S)- enantiomers. Upon anti-schistosomal screening of these analogues, the (R)- enantiomer retained activity, whereas the (S)- lost activity. Furthermore, modification of the lactone ring to a thiolactone ring (3) improved potency against schistosomula (EC50 = 2.1 µM), juvenile worms (EC50 = 0.5 µM) and adult worms (EC50 = 4.8 µM). As the active racemic parent compound is structurally similar to quorum sensing signaling peptides used by bacteria, further evaluation of its effect (along with its stereoisomers and the thiolactone analogues) against Gram+ (Staphylococcus aureus) and Gram- (Escherichia coli) species was conducted. While some activity was observed against both Gram+ and Gram- bacteria species for the racemic compound 1 (MIC 125 mg/L), the (R) stereoisomer had better activity (125 mg/L) than the (S) (>125mg/L). However, the greatest antimicrobial activity (MIC 31.25 mg/L against S. aureus) was observed for the thiolactone containing analogue (3).Conclusion/SignificanceTo the best of our knowledge, this is the first demonstration that N-Acyl homoserines exhibit anthelmintic activities. Furthermore, their additional action on Gram+ bacteria opens a new avenue for exploring these molecules more broadly as part of future anti-infective initiatives.Author SummarySchistosomiasis, caused by infection with blood fluke schistosomes, is a neglected tropical disease that negatively impacts the lives of approximately 300 million people worldwide. In the absence of a vaccine, it is currently controlled by a single drug, Praziquantel (PZQ). Although incredibly valuable in controlling disease burden, PZQ-mediated chemotherapy is ineffective against juvenile worms and may not be sustainable should resistance develop. The need to identify an alternative or combinatorial drug is, therefore, a priority in contributing to the control of this parasitic disease into the 21st century. In this study, we have identified a new class of anthelmintic, N-acyl homoserine lactones, which are normally used by bacteria for quorum sensing and population density control. The tested N-acyl homoserine lactones were active against all intra-human schistosome lifecycle stages, in particular, when a thiolactone modification to the core N-acyl homoserine ring was made. Interestingly, these N-acyl homoserine lactones also displayed antimicrobial activities against Gram+Staphylococcus aureus. By demonstrating broad activities against schistosomes and bacteria exemplars, this study identified a potential route for the further development of a new anti-infective class.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Organization WH. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. Geneva: World Health Organization; 2010.

2. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases;PLoS neglected tropical diseases,2014

3. Antibiotic resistance;Journal of infection and public health,2017

4. Regulation of multidrug resistance in pathogenic fungi

5. Chevalier FD, L. Clec’h W , McDew-White M , Menon V , Guzman MA , Holloway SP , et al. Oxamniquine resistance alleles are widespread in Old World Schistosoma mansoni and predate drug deployment. PLoS pathogens. 2019;15(10).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3