Abstract
ABSTRACTVascular smooth muscle cells (vSMCs) are one of the essential cell types in blood vessel walls. A significant vSMC phenotype characteristic is that they collectively wrap around the outer layer of the healthy blood vessels with spindle-like morphology and help maintain the vascular tones and regulate the blood flow. Both physiological and biomedical research are impeded by the standard 2D cell culture approaches which do not create in vivo like microenvironment. Here, we systematically investigated the vSMCs culturing within 3D printed geometrical constraints and on printed microfilaments. Based on these models, we demonstrate a simple bioprinting approach for fast manufacturing vessel architectures with micro-grooved surfaces for vSMCs alignment. We validated that the vSMCs cultured on the printed vessel with microfilaments (VWMF) present a more physiologically relevant morphological phenotype and gene expression profile, and they are considerably more active in wound healing and ischemia than conventional planarly cultured vSMCs.
Publisher
Cold Spring Harbor Laboratory