Temperature impacts the transmission of malaria parasites byAnopheles gambiaeandAnopheles stephensimosquitoes

Author:

Villena Oswaldo C.,Ryan Sadie J.ORCID,Murdock Courtney C.,Johnson Leah R.ORCID

Abstract

AbstractExtrinsic environmental factors influence the spatio-temporal dynamics of many organisms, including insects that transmit the pathogens responsible for vector-borne diseases (VBDs). Temperature is an especially important constraint on the fitness of a wide variety of insects, as they are primarily ectotherms. Temperature constrains the distribution of ectotherms and therefore of the infections that they spread in both space and time. More concretely, a mechanistic understanding of how temperature impacts traits of ectotherms to predict the distribution of ectotherms and vector-borne infections is key to predicting the consequences of climate change on transmission of VBDs like malaria. However, the response of transmission to temperature and other drivers is complex, as thermal traits of ectotherms are typically non-linear, and they interact to determine transmission constraints. In this study, we assess and compare the effect of temperature on the transmission of two malaria parasites,Plasmodium falciparumandPlasmodium vivax, by two malaria vector species,Anopheles gambiaeandAnopheles stephensi. We model the non-linear responses of temperature dependent mosquito and parasite traits (mosquito development rate, bite rate, fecundity, egg to adult survival, vector competence, mortality rate, and parasite development rate) and incorporate these traits into a suitability metric based on a model for the basic reproductive number across temperatures. Our model predicts that the optimum temperature for transmission suitability is similar for the four mosquito-parasite combinations assessed in this study. The main differences are found at the thermal limits. More specifically, we found significant differences in the upper thermal limit between parasites spread by the same mosquito (An. stephensi) and between mosquitoes carryingP. falciparum. In contrast, at the lower thermal limit the significant differences were primarily between the mosquito species that both carried the same pathogen (e.g.,An. stephensiandAn. gambiaeboth withP. falciparum). Using prevalence data from Africa and Asia, we show that the transmission suitability metricS(T) calculated from our mechanistic model is an important predictor of malaria prevalence. We mapped risk to illustrate the areas in Africa and Asia that are suitable for malaria transmission year-round based temperature.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3