Updates on enzymatic and structural properties of human glutamine: fructose-6-phosphate amidotransferase 2 (hGFAT2)

Author:

Oliveira Isadora A.,Allonso Diego,Fernandes Tácio V. A.,Lucena Daniela M. S.,Ventura Gustavo T.,Dias Wagner B.,Mohana-Borges Ronaldo S.,Pascutti Pedro G.,Todeschini Adriane R.ORCID

Abstract

AbstractGlycoconjugates play a central role in several cellular processes and alteration in their composition is associated to human pathologies. The hexosamine biosynthetic pathway is a route through which cells obtain substrates for cellular glycosylation, and is controlled by the glutamine: fructose-6-phosphate amidotransferase (GFAT). Human isoform 2 GFAT (hGFAT2) has been implicated in diabetes and cancer, however, there is no information about structural and enzymatic properties of this enzyme. Here, we report a successful expression and purification of a catalytically active recombinant hGFAT2 (rhGFAT2) in E. coli cells fused or not to a HisTag at the C-terminal end. Our enzyme kinetics data suggest that hGFAT2 does not follow the ordered bi-bi mechanism, and performs the glucosamine-6-phosphate synthesis much slowly than previously reported for other GFATs. In addition, hGFAT2 is able to isomerase fructose-6-phosphate into glucose-6-phosphate even in presence of equimolar amounts of glutamine, in an unproductive glutamine hydrolysis. Structural analysis of the generated three-dimensional model rhGFAT2, corroborated by circular dichroism data, indicated the presence of a partially structured loop in glutaminase domain, whose sequence is present in eukaryotic enzymes but absent in the E. coli homolog. Molecular dynamics simulations show such loop as the most flexible portion of the protein, which interacts with the protein mainly through the interdomain region, and plays a key role on conformational states of hGFAT2. Altogether, our study provides the first comprehensive set of data on the structure, kinetics and mechanics of hGFAT2, which will certainly contribute for further studies focusing on drug development targeting hGFAT2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3