Author:
Yin Rui,Luo Zihan,Zhuang Pei,Lin Zhuoyi,Kwoh Chee Keong
Abstract
AbstractMotivationInfluenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics. The evolution of influenza viruses remains to be the main obstacle in the effectiveness of antiviral treatments due to rapid mutations. Previous work has been investigated to reveal the determinants of virulence of the influenza A virus. To further facilitate flu surveillance, explicit detection of influenza virulence is crucial to protect public health from potential future pandemics.ResultsIn this paper, we propose a weighted ensemble convolutional neural network for the virulence prediction of influenza A viruses named VirPreNet that uses all 8 segments. Firstly, mouse lethal dose 50 is exerted to label the virulence of infections into two classes, namely avirulent and virulent. A numerical representation of amino acids named ProtVec is applied to the 8-segments in a distributed manner to encode the biological sequences. After splittings and embeddings of influenza strains, the ensemble convolutional neural network is constructed as the base model on the influenza dataset of each segment, which serves as the VirPreNet’s main part. Followed by a linear layer, the initial predictive outcomes are integrated and assigned with different weights for the final prediction. The experimental results on the collected influenza dataset indicate that VirPreNet achieves state-of-the-art performance combining ProtVec with our proposed architecture. It outperforms baseline methods on the independent testing data. Moreover, our proposed model reveals the importance of PB2 and HA segments on the virulence prediction. We believe that our model may provide new insights into the investigation of influenza virulence.Contactyinr0002@e.ntu.edu.sgAvailability and ImplementationCodes and data to generate the VirPreNet are publicly available at https://github.com/Rayin-saber/VirPreNet
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献