Voxel-level Classification of Prostate Cancer Using a Four-Compartment Restriction Spectrum Imaging Model

Author:

Feng Christine HORCID,Conlin Christopher C,Batra Kanha,Rodríguez-Soto Ana E,Karunamuni Roshan,Simon Aaron,Kuperman Joshua,Rakow-Penner Rebecca,Hahn Michael E,Dale Anders M,Seibert Tyler M

Abstract

AbstractPurposeDiffusion MRI is integral to detection of prostate cancer (PCa), but conventional ADC cannot capture the complexity of prostate tissues. A four-compartment restriction spectrum imaging (RSI4) model was recently found to optimally characterize pelvic diffusion signals, and the model coefficient for the slowest diffusion compartment, RSI4-C1, yielded greatest tumor conspicuity. In this study, RSI4-C1 was evaluated as a quantitative voxel-level classifier of PCa.MethodsThis was a retrospective analysis of 46 men who underwent an expanded-acquisition pelvic MRI for suspected PCa. Twenty-three men had no detectable cancer on biopsy or clinical follow-up; the other 23 had biopsy-proven PCa corresponding to a lesion on MRI (PI-RADS category 3-5). High-confidence cancer voxels were delineated by expert consensus, using imaging data and biopsy results. The entire prostate was considered benign in patients with no detectable cancer. Diffusion images were used to calculate RSI4-C1 and conventional ADC. Voxel-level discrimination of PCa from benign prostate tissue was assessed via receiver operating characteristic (ROC) curves generated by bootstrapping with patient-level case resampling. Specifically, we compared RSI4-C1 and conventional ADC on mean (and 95% CI) for two metrics: area under the curve (AUC) and false-positive rate for a sensitivity of 90% (FPR90). Classifier images were also compared.ResultsRSI4-C1 outperformed conventional ADC, with greater AUC [0.977 (0.951-0.991) vs. 0.921 (0.873-0.949)] and lower FPR90 [0.033 (0.009-0.083) vs. 0.201 (0.131-0.300)].ConclusionRSI4-C1 yielded a quantitative, voxel-level classifier of PCa that was superior to conventional ADC. RSI classifier images with a low false-positive rate might improve PCa detection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3