periscope: sub-genomic RNA identification in SARS-CoV-2 Genomic Sequencing Data

Author:

Parker Matthew DORCID,Lindsey Benjamin BORCID,Leary Shay,Gaudieri Silvana,Chopra Abha,Wyles Matthew,Angyal AdriennORCID,Green Luke RORCID,Parsons Paul,Tucker Rachel M,Brown Rebecca,Groves Danielle,Johnson Katie,Carrilero Laura,Heffer Joe,Partridge David G,Evans Cariad,Raza Mohammad,Keeley Alexander J,Smith Nikki,Filipe Ana Da Silva,Shepherd James G,Davis Chris,Bennett Sahan,Kohl Alain,Aranday-Cortes Elihu,Tong Lily,Nichols Jenna,Thomson Emma CORCID,Wang DennisORCID,Mallal SimonORCID,de Silva Thushan IORCID,

Abstract

AbstractWe have developed periscope, a tool for the detection and quantification of sub-genomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed “sub-genomic RNAs”. sgRNAs are produced through discontinuous transcription which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L which is located in the 5’ UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5’ end of all sgRNA. We applied periscope to 1,155 SARS-CoV-2 genomes from Sheffield, UK and validated our findings using orthogonal datasets and in vitro cell systems. Using a simple local alignment to detect reads which contain the leader sequence we were able to identify and quantify reads arising from canonical and non-canonical sgRNA. We were able to detect all canonical sgRNAs at expected abundances, with the exception of ORF10. A number of recurrent non-canonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/− cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing datasets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3