Transcriptomic signatures of ageing vary in solitary and social forms of an orchid bee

Author:

Séguret Alice C.ORCID,Stolle EckartORCID,Fleites-Ayil Fernando A.ORCID,Quezada-Euán José Javier G.,Hartfelder KlausORCID,Meusemann KarenORCID,Harrison MarkORCID,Soro AntonellaORCID,Paxton Robert J.ORCID

Abstract

AbstractEusocial insect queens are remarkable in their ability to maximise both fecundity and longevity, thus escaping the typical trade-off between these two traits. In species exhibiting complex eusocial behaviour, several mechanisms have been proposed to underlie the remoulding of the trade-off, such as reshaping of the juvenile hormone pathway, or caste-specific susceptibility to oxidative stress. However, it remains a challenge to disentangle the molecular mechanisms underlying the remoulding of the trade-off in eusocial insects from caste-specific physiological attributes that have subsequently arisen due to their different life histories. Socially plastic species such as the orchid bee Euglossa viridissima represent excellent models to address the role of sociality per se in longevity as they allow direct comparisons of solitary and social individuals within a common genetic background. We present data on gene expression and juvenile hormone levels from young and old bees, from both solitary and social nests. We found 940 genes to be differentially expressed with age in solitary females, versus only 14 genes in social dominant females, and seven genes in subordinate females. We performed a weighted gene co-expression network analysis to further highlight candidate genes related to ageing in this species. Primary “ageing gene” candidates were related to protein synthesis, gene expression, immunity and venom production. Remarkably, juvenile hormone titres did not vary with age or social status. These results represent an important step in understanding the proximate mechanisms underlying the remodeling of the fecundity/longevity trade-off that accompanies the evolutionary transition from solitary life to eusociality.Significance statementThe remarkably long lifespan of the queens of eusocial insects despite their high reproductive output suggests that they are not subject to the widespread trade-off between fecundity and longevity that governs solitary animal life histories, yet surprisingly little is known of the molecular mechanisms underpinning their longevity. Using a socially plastic bee in which some individuals of a population are social whilst others are solitary, we identified hundreds of candidate genes and related gene networks that are involved in the remoulding of the fecundity/longevity tradeoff. As well as identifying candidate ageing genes, our data suggest that even in incipient stages of sociality there is a marked reprogramming of ageing; long live the queen.

Publisher

Cold Spring Harbor Laboratory

Reference99 articles.

1. Increased susceptibility to oxidative stress as a proximate cost of reproduction

2. Social reversal of immunosenescence in honey bee workers

3. Reproductive regulation in an orchid bee: social context, fertility and chemical signalling;Anim Behav,2015

4. Andrews S. 2010. FastQC: A quality control tool for high throughput sequence data (version 0.11.4). https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects;Philosophical Transactions of the Royal Society B: Biological Sciences;2021-03-08

2. Oxidative stress and senescence in social insects: a significant but inconsistent link?;Philosophical Transactions of the Royal Society B: Biological Sciences;2021-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3