Abstract
AbstractLinaridins are members of the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Five linaridins have been reported, which are defined by the presence of dehydrobutyrine, a dehydrated threonine residue. This work describes the development of a linaridin specific scoring module for Rapid ORF Description and Evaluation Online (RODEO), a genome-mining tool tailored towards RiPP discovery. Upon mining publicly accessible genomes available in the NCBI database, RODEO identified 561 (382 non-redundant) linaridin biosynthetic gene clusters (BGCs). Linaridin BGCs with unique gene architectures and precursor sequences markedly different from previous predictions were uncovered during these efforts. To aid in dataset validation, two new linaridins, pegvadin A and B, were detected through reactivity-based screening (RBS) and isolated from Streptomyces noursei and Streptomyces auratus, respectively. RBS involves the use of a reactive chemical probe that chemoselectively modifies a functional group present in the natural product. The dehydrated amino acids present in linaridins as α/β-unsaturated carbonyls were appropriate electrophiles for nucleophilic 1,4 addition using a thiol-functionalized probe. The data presented within significantly expands the number of predicted linaridin BGCs and serves as a road map for future work in the area. The combination of bioinformatics and RBS is a powerful approach to accelerate natural product discovery.
Publisher
Cold Spring Harbor Laboratory