Myosin Va Brain-Specific Mutation Alters Mouse Behavior and Disrupts Hippocampal Synapses

Author:

Pandian Swarna,Zhao Jian-Ping,Murata Yasunobu,Bustos Fernando J.,Tunca Cansu,Almeida Ramiro D.,Constantine-Paton Martha

Abstract

ABSTRACTMyosin Va (MyoVa) is a plus-end filamentous-actin motor protein that is highly and broadly expressed in the vertebrate body, including in the nervous system. In excitatory neurons MyoVa transports cargo toward the tip of the dendritic spine, where the post-synaptic density (PSD) is formed and maintained. MyoVa mutations in humans cause neurological dysfunction, mental retardation, hypomelanation and death in infancy or childhood. Here we characterize the Flailer (Flr) mutant mouse, which is homozygous for amyo5amutation that drives high levels of mutant MyoVa (Flr protein) specifically in the CNS. Flr protein functions as a dominant-negative MyoVa, sequestering cargo and blocking its transport to the PSD. Flr mice have early seizures and mild ataxia, but mature and breed normally. Flr mice display several abnormal behaviors known to be associated with brain regions that show high expression of Flr protein. Flr mice are defective in the transport of synaptic components to the PSD and in mGluR-dependent LTD and have a reduced number of mature dendritic spines. The synaptic and behavioral abnormalities of Flr mice result in an anxiety/autism spectrum disorder (ASD)/obsessive compulsive-like phenotype similar to that of other mouse mutants with similar abnormalities. Because of the dominant-negative nature of the Flr protein, the Flr mouse offers a powerful system for the analysis of how the disruption of synaptic transport and lack of LTD can alter synaptic function, development and wiring of the brain and result in symptoms that characterize many neuropsychiatric disorders.SIGNIFICANCE STATEMENTHere we characterize a mutant mouse homozygous for a Myosin Va mutation named Flailer. The Flailer mutation generates a dominant-negative MyoVa transport motor protein that sequesters synaptic cargo and blocks synaptic transport, thereby resulting in an absence of LTD and in abnormal behaviors similar to those seen anxiety/Autism Spectrum disorders. We propose that the Flailer mutant can be used as a model to study how the absence of LTD disrupts brain connectivity and behavior. Moreover, by using the Flailer mutation together with gene editing technologies it should be possible to target specific brain areas to remove the mutation and recover MyoVa function, thereby interrogating the role of a specific brain region in the control of a particular behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3