Mind reading of the proteins: Deep-learning to forecast molecular dynamics

Author:

Gupta Chitrak,Cava John Kevin,Sarkar Daipayan,Wilson Eric,Vant John,Murray Steven,Singharoy Abhishek,Karmaker Shubhra Kanti

Abstract

AbstractMolecular dynamics (MD) simulations have emerged to become the back-bone of today’s computational biophysics. Simulation tools such as, NAMD, AMBER and GROMACS have accumulated more than 100,000 users. Despite this remarkable success, now also bolstered by compatibility with graphics processor units (GPUs) and exascale computers, even the most scalable simulations cannot access biologically relevant timescales - the number of numerical integration steps necessary for solving differential equations in a million-to-billion-dimensional space is computationally in-tractable. Recent advancements in Deep Learning has made it such that patterns can be found in high dimensional data. In addition, Deep Learning have also been used for simulating physical dynamics. Here, we utilize LSTMs in order to predict future molecular dynamics from current and previous timesteps, and examine how this physics-guided learning can benefit researchers in computational biophysics. In particular, we test fully connected Feed-forward Neural Networks, Recurrent Neural Networks with LSTM / GRU memory cells with TensorFlow and PyTorch frame-works trained on data from NAMD simulations to predict conformational transitions on two different biological systems. We find that non-equilibrium MD is easier to train and performance improves under the assumption that each atom is independent of all other atoms in the system. Our study represents a case study for high-dimensional data that switches stochastically between fast and slow regimes. Applications of resolving these sets will allow real-world applications in the interpretation of data from Atomic Force Microscopy experiments.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

1. On the Range of Applicability of the Reissner–Mindlin and Kirchhoff–Love Plate Bending Models;Journal of elasticity and the physical science of solids,2002

2. The Protein Data Bank

3. Charles, R.Q. , Su, H. , Kaichun, M. , Guibas, L.J. : Pointnet: Deep learning on point sets for 3d classification and segmentation. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Jul 2017), http://dx.doi.org/10.1109/CVPR.2017.16

4. Recurrent neural networks for multivariate time series with missing values;Scientific reports,2018

5. A thorough review on the current advance of neural network structures;Annual Reviews in Control,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3