Waking experience modulates sleep need in mice

Author:

Milinski Linus,Fisher Simon P.,Cui Nanyi,McKillop Laura E.,Blanco Duque Cristina,Ang Gauri,Yamagata TomokoORCID,Bannerman David M.ORCID,Vyazovskiy Vladyslav V.ORCID

Abstract

AbstractHomeostatic regulation of sleep is reflected in the maintenance of a daily balance between sleep and wake. Although numerous internal and external factors can influence sleep, it is unclear whether and to what extent the process that keeps track of time spent awake is determined by the content of the waking experience. We hypothesised that alterations in environmental conditions may elicit different types of wakefulness, which will in turn influence both the capacity to sustain continuous wakefulness as well the rates of accumulating sleep pressure. To address this, we performed two experiments, where we compared wakefulness dominated by novel object exploration with either (i) the effects of voluntary wheel running (Experiment 1) or (ii) performance in a simple touchscreen task (Experiment 2). We find that voluntary wheel running results in longer wake episodes, as compared with exploratory behaviour; yet it does not lead to higher levels of EEG slow wave activity (SWA) during subsequent sleep. On the other hand, engagement in a touchscreen task, motivated by a food reward, results in lower SWA during subsequent sleep, as compared to exploratory wakefulness, even though the total duration of wakefulness was similar. Overall, our study suggests that sleep-wake behaviour is highly flexible within an individual, and that the homeostatic process that keeps track of time spent awake is sensitive to the nature of the waking experience. We therefore conclude that sleep dynamics are determined, to a large degree, by the interaction between the organism and the environment.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3