Phenoflow: A Microservice Architecture for Portable Workflow-based Phenotype Definitions

Author:

Chapman MartinORCID,Rasmussen Luke V.,Pacheco Jennifer A.,Curcin Vasa

Abstract

AbstractPhenotyping is an effective way to identify cohorts of patients with particular characteristics within a population. In order to enhance the portability of a phenotype definition across institutions, it is often defined abstractly, with implementers expected to realise the phenotype computationally before executing it against a dataset. However, unclear definitions, with little information about how best to implement the definition in practice, hinder this process. To address this issue, we propose a new multi-layer, workflow-based model for defining phenotypes, and a novel authoring architecture, Phenoflow, that supports the development of these structured definitions and their realisation as computable phenotypes. To evaluate our model, we determine its impact on the portability of both code-based (COVID-19) and logic-based (diabetes) definitions, in the context of key datasets, including 26,406 patients at North-western University. Our approach is shown to ensure the portability of phenotype definitions and thus contributes to the transparency of resulting studies.

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. Richesson R , Smerek M. Electronic health records-based phenotyping. In: Rethinking clinical trials: A living textbook of pragmatic clinical trials. Duke Clinical Research Institute; 2014. p. 1–19.

2. PheKB: a catalog and workflow for creating electronic phenotype algorithms for transportability

3. UK phenomics platform for developing and validating electronic health record phenotypes: CALIBER;Journal of the American Medical Informatics Association,2019

4. Cyberinfrastructure for e-Science

5. Bernardi F , Santucci JF . Model design using hierarchical web-based libraries. In: Design Automation Conference. New York, New York, USA: ACM Press; 2002. p. 14–17.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3