Arrhythmogenesis as the failure of repolarization

Author:

Heitmann StewartORCID,Vandenberg Jamie IORCID,Hill Adam P

Abstract

AbstractContemporary theories of cardiac fibrillation typically rely on the emergence of rotors to explain the transition from regular sinus rhythm to disordered electrophysiological activity. How those rotors spontaneously arise in the absence of re-entrant anatomical circuits is not fully understood. Here we propose a novel mechanism where arrhythmias are initiated by cardiac cells that fail to repolarize following a normal heartbeat. Those cells subsequently act as a focal ectopic source that drive the ensuing fibrillation. We used a simple computational model to investigate the impact of such cells in both homogeneous and heterogeneous excitable media. We found that heterogeneous media can tolerate a surprisingly large number of abnormal cells and still support normal rhythmic activity. At a critical limit the medium becomes chronically arrhythmogenic. Numerical analysis revealed that the critical threshold for arrhythmogenesis depends on both the strength of the coupling between cells and the extent to which the abnormal cells resist repolarization. Arrhythmogenesis was also found to emerge first at tissue boundaries where cells naturally have fewer neighbors to influence their behavior. These findings may explain why atrial fibrillation typically originates from the cuff of the pulmonary vein.Author summaryCardiac fibrillation is a medical condition where normal heart function is compromised as electrical activity becomes disordered. How fibrillation arises spontaneously is not fully understood. It is generally thought to be triggered by premature depolarization of the cardiac action potential in one or more cells. Those premature beats, known as early-afterdepolarizations, subsequently initiate a self-sustaining rotor in the otherwise normal heart tissue. In this study, we propose an alternative mechanism whereby arrhythmias are initiated by cardiac cells that fail to repolarize of their own accord but still operate normally when embedded in functional heart tissue. We find that such cells can act as focal ectopic sources under appropriate conditions of inter-cellular coupling. Moreover, cells on natural tissue boundaries are more susceptible to arrhythmia because they are coupled to fewer cells. This may explain why the pulmonary vein is often implicated as a source of atrial fibrillation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3