Modular and state-relevant connectivity in high-frequency resting-state BOLD fMRI data: An independent component analysis

Author:

DeRamus ThomasORCID,Faghiri AshkanORCID,Iraji ArminORCID,Agcaoglu OktayORCID,Vergara VictorORCID,Fu ZeningORCID,Silva RogersORCID,Gazula Harshvardhan,Stephen JuliaORCID,Wilson Tony W.ORCID,Wang Yu-PingORCID,Calhoun VinceORCID

Abstract

AbstractResting-state fMRI (rs-fMRI) data are typically filtered at different frequency bins between 0.008∼0.2 Hz (varies across the literature) prior to analysis to mitigate nuisance variables (e.g., drift, motion, cardiac, and respiratory) and maximize the sensitivity to neuronal-mediated BOLD signal. However, multiple lines of evidence suggest meaningful BOLD signal may also be parsed at higher frequencies. To test this notion, a functional network connectivity (FNC) analysis based on a spatially informed independent component analysis (ICA) was performed at seven different bandpass frequency bins to examine FNC matrices across spectra. Further, eyes open (EO) vs. eyes closed (EC) resting-state acquisitions from the same participants were compared across frequency bins to examine if EO vs. EC FNC matrices and randomness estimations of FNC matrices are distinguishable at different frequencies.Results show that FNCs in higher-frequency bins display modular FNC similar to the lowest frequency bin, while r-to-z FNC and FNC-based measures indicating matrix non-randomness were highest in the 0.31-0.46 Hz range relative to all frequency bins above and below this range. As such, the FNC within this range appears to be the most temporally correlated, but the mechanisms facilitating this coherence require further analyses. Compared to EO, EC displayed greater FNC (involved in visual, cognitive control, somatomotor, and auditory domains) and randomness values at lower frequency bins, but this phenomenon flipped (EO > EC) at frequency bins greater than 0.46 Hz, particularly within visual regions.While the effect sizes range from small to large specific to frequency range and resting state (EO vs. EC), with little influence from common artifacts. These differences indicate that unique information can be derived from FNC between BOLD signals at different frequencies relative to a given restingstate acquisition and support the hypothesis meaningful BOLD signal is present at higher frequency ranges.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3