Loss of PRC2 subunits primes lineage choice during exit of pluripotency

Author:

Loh Chet HORCID,Perino Matteo,Bark Magnus R,Veenstra Gert Jan CORCID

Abstract

AbstractPolycomb Repressive Complex 2 (PRC2) is crucial for the coordinated expression of genes during early embryonic development, catalyzing histone H3 lysine 27 trimethylation. There are two distinct PRC2 complexes, PRC2.1 and PRC2.2, which contain respectively MTF2 and JARID2 in ES cells. Very little is known about the roles of these auxiliary PRC2 subunits during the exit of pluripotency. In this study, we explored their roles in lineage specification and commitment, using single-cell transcriptomics and mouse embryoid bodies derived from Mtf2 and Jarid2 null embryonic stem cells (ESCs). We observed that the loss of Mtf2 resulted in enhanced and faster differentiation towards cell fates from all germ layers, while the Jarid2 null cells were predominantly directed towards early differentiating precursors and neuro-ectodermal fates. Interestingly, we found that these effects are caused by derepression of developmental regulators that were poised for activation in pluripotent cells and gained H3K4me3 at their promoters in the absence of PRC2 repression. Upon lineage commitment, the differentiation trajectories were relatively similar to those of wild type cells. Together, our results uncovered a major role for MTF2-containing PRC2.1 in balancing poised lineage-specific gene activation, providing a threshold for lineage choice during the exit of pluripotency.HighlightsEnhanced and faster differentiation into all three germ layers in Mtf2 null embryoid bodiesJarid2 null cells enriched for early differentiating precursors and neuro-ectodermal cell fatesMTF2 is critical for the balance of activation and repression of key developmental regulatorsPRC2 coordinates lineage choice and execution of the lineage-specific program by thresholding of lineage-priming

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3