Production of moth sex pheromones for pest control by yeast fermentation

Author:

Holkenbrink Carina,Ding Bao-Jian,Wang Hong-Lei,Dam Marie Inger,Petkevicius Karolis,Kildegaard Kanchana Rueksomtawin,Wenning Leonie,Sinkwitz Christina,Lorántfy Bettina,Koutsoumpeli Eleni,França Lucas,Pires Marina,Bernardi Carmem,Urrutia William,Mafra-Neto Agenor,Ferreira Bruno Sommer,Raptopoulos Dimitris,Konstantopoulou Maria,Löfstedt Christer,Borodina Irina

Abstract

AbstractThe use of insect sex pheromones is an alternative technology for pest control in agriculture and forestry, which, in contrast to insecticides, does not have adverse effects on human health or environment and is efficient also against insecticide-resistant insect populations.1,2 Due to the high cost of chemically synthesized pheromones, mating disruption applications are currently primarily targeting higher value crops, such as fruits.3 Here we demonstrate a biotechnological method for the production of pheromones of economically important moth pests using engineered yeast cell factories. Biosynthetic pathways towards several pheromones or their precursors were reconstructed in the oleaginous yeast Yarrowia lipolytica, which was further metabolically engineered for improved pheromone biosynthesis by decreasing fatty alcohol degradation and downregulating storage lipid accumulation. The sex pheromone of the cotton bollworm Helicoverpa armigera was produced by oxidation of fermented fatty alcohols into corresponding aldehydes. The resulting pheromone was just as efficient and specific for trapping of H. armigera male moths in cotton fields in Greece as a synthetic pheromone mixture. We further demonstrated the production of the main pheromone component of the fall armyworm Spodoptera frugiperda. Our work describes a biotech platform for the production of commercially relevant titres of moth pheromones for pest control by yeast fermentation.Significance statementAgriculture largely relies on insecticides and genetically modified crops for pest control, however alternative solutions are required due to emerging resistance, toxicity and regulatory issues, and consumer preferences. Mating disruption with sex pheromones that act by preventing insect reproduction is considered the most promising and scalable alternative to insecticides. This method is highly efficient and safe for human health and environment. The likelihood of insect resistance development is very low and can be handled by adjusting the pheromone composition. The high cost of chemically synthesized pheromones is the major barrier for the wider adoption of pheromones. A novel method based on yeast fermentation enables the production of insect sex pheromones as a lower cost from renewable feedstocks.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3