Adults vs. neonates: Differentiation of functional connectivity between the basolateral amygdala and occipitotemporal cortex

Author:

Hansen Heather A.ORCID,Li Jin,Saygin Zeynep M.

Abstract

AbstractThe amygdala, a subcortical structure known for social and emotional processing, consists of multiple subnuclei with unique functions and connectivity patterns. Tracer studies in adult macaques have shown that the basolateral subnuclei differentially connect to parts of visual cortex, with stronger connections to anterior regions and weaker connections to posterior regions; infant macaques show robust connectivity even with posterior visual regions. Do these developmental differences also exist in the human amygdala, and are there specific functional regions that undergo the most pronounced developmental changes in their connections with the amygdala? To address these questions, we explored the functional connectivity (from resting-state fMRI data) of the basolateral amygdala to occipitotemporal cortex in human neonates scanned within one week of life and compared the connectivity patterns to those observed in young adults. Specifically, we calculated amygdala connectivity to anterior-posterior gradients of the anatomically-defined occipitotemporal cortex, and also to putative occipitotemporal functional parcels, including primary and high-level visual and auditory cortices (V1, A1, face, scene, object, body, high-level auditory regions). Results showed a decreasing gradient of functional connectivity to the occipitotemporal cortex in adults – similar to the gradient seen in macaque tracer studies – but no such gradient was observed in neonates. Further, adults had stronger connections to high-level functional regions associated with face, body, and object processing, and weaker connections to primary sensory regions (i.e., A1, V1), whereas neonates showed the same amount of connectivity to primary and high-level sensory regions. Overall, these results show that functional connectivity between the amygdala and occipitotemporal cortex is not yet differentiated in neonates, suggesting a role of maturation and experience in shaping these connections later in life.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3