Abstract
AbstractDisturbance events to coastal habitats such as extreme heat events, storms, or floods have increased in magnitude and frequency in recent years due to anthropogenic climate change and the destruction of habitats. These events constitute a major threat to many ecological communities and global biodiversity. Disturbance history influences ecosystem response to novel disturbances such that communities that have previously been exposed to disturbances should be more resilient to new disturbances compared to previously sheltered communities. This principle is defined as ecological memory. Resilience should also increase with access to a larger species pool, because a larger species pool increases species and response diversity of a community. One possibility of increasing the local species pool is connectivity via adequate dispersal between habitat patches with different species compositions in metacommunities. In a laboratory experiment, we exposed benthic diatom communities of different origin to a mechanical disturbance, simulated dispersal in half of the communities, and measured their chlorophyll a concentration over time. The local diatom communities originated from different locations on an intertidal flat that varied in hydrodynamic exposure history. Hydrodynamic exposure disturbs the sediment, and thereby determines sediment properties and the composition of intertidal diatom communities. In the experiment, disturbance negatively affected chlorophyll a concentration across all treatments. However, the response to disturbance depended on the ecological memory of the communities; the more exposed areas the communities originated from, the less negative was the effect of the mechanical disturbance. Interestingly, dispersal did not mitigate the negative impacts of disturbance in any of the communities. Our results highlight the importance of ecological memory for ecosystem functioning and demonstrate the limitations of patch connectivity to alleviate the impacts of disturbance events in metacommunities.
Publisher
Cold Spring Harbor Laboratory