Abstract
AbstractWe present a new mathematical model of disease spread reflecting specialties of covid-19 epidemic by elevating the role social clustering of population. The model can be used to explain slower approaching herd immunity in Sweden, than it was predicted by a variety of other mathematical models; see graphs Fig. 2. The hierarchic structure of social clusters is mathematically modeled with ultrametric spaces having treelike geometry. To simplify mathematics, we consider homogeneous trees with p-branches leaving each vertex. Such trees are endowed with algebraic structure, the p-adic number fields. We apply theory of the p-adic diffusion equation to describe coronavirus’ spread in hierarchically clustered population. This equation has applications to statistical physics and microbiology for modeling dynamics on energy landscapes. To move from one social cluster (valley) to another, the virus (its carrier) should cross a social barrier between them. The magnitude of a barrier depends on the number of social hierarchy’s levels composing this barrier. As the most appropriate for the recent situation in Sweden, we consider linearly increasing barriers. This structure matches with mild regulations in Sweden. The virus spreads rather easily inside a social cluster (say working collective), but jumps to other clusters are constrained by social barriers. This behavior matches with the covid-19 epidemic, with its cluster spreading structure. Our model differs crucially from the standard mathematical models of spread of disease, such as the SIR-model. We present socio-medical specialties of the covid-19 epidemic supporting our purely diffusional model.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献