Space-time patterns, change, and propagation of COVID-19 risk relative to the intervention scenarios in Bangladesh

Author:

Masrur ArifORCID,Yu Manzhu,Luo Wei,Dewan Ashraf

Abstract

AbstractThe novel coronavirus (COVID-19) pandemic continues to be a significant public health threat worldwide. As of mid-June 2020, COVID-19 has spread worldwide with more than 7.7 million confirmed cases and more than 400,000 deaths. The impacts are substantial particularly in developing and densely populated countries like Bangladesh with inadequate health care facilities, where COVID-19 cases are currently surging. While early detection and isolation were identified as important non-pharmaceutical intervention (NPI) measures for containing the disease spread, this may not be pragmatically implementable in developing countries primarily due to social and economic reasons (i.e. poor education, less public awareness, massive unemployment). To shed light on COVID-19 transmission dynamics and impacts of NPI scenarios – e.g. social distancing, this study conducted emerging pattern analysis using the space-time scan statistic at district and thana (i.e. a sub-district or ‘upazila’ with at least one police station) levels in Bangladesh and its capital – Dhaka city, respectively. We found that the central and south eastern regions in Bangladesh are currently exhibiting a high risk of COVID-19 transmission. Dhaka megacity remains as the highest risk “active” cluster since early April. The space-time progression of COVID-19 infection, when validated against the chronicle of government press releases and newspaper reports, suggests that Bangladesh have experienced a community level transmission at the early phase (i.e., March, 2020) primarily introduced by Bangladeshi citizens returning from coronavirus-affected countries in the Europe and the Middle East. A linkage is evident between the violation of NPIs and post-incubation period emergence of new clusters with elevated exposure risk around Bangladesh. This study provides novel insights into the space-time patterns of COVID-19 transmission dynamics and recommends pragmatic NPI implementation for reducing disease transmission and minimizing impacts in a resource-scarce country with Bangladesh as a case-study example.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3