Author:
Liu Yangtai,Wang Xiang,Liu Baolin,Dong Qingli
Abstract
AbstractMicrorisk Lab was designed as an interactive modeling freeware to realize parameter estimation and model simulation in predictive microbiology. This tool was developed based on the R programming language and ‘Shinyapps.io’ server, and designed as a fully responsive interface to the internet-connected devices. A total of 36 peer-reviewed models were integrated for parameter estimation (including primary models of bacterial growth/ inactivation under static and non-isothermal conditions, secondary models of specific growth rate, and competition models of two-flora growth) and model simulation (including integrated models of deterministic or stochastic bacterial growth/ inactivation under static and non-isothermal conditions) in Microrisk Lab. Each modeling section was designed to provide numerical and graphical results with comprehensive statistical indicators depending on the appropriate dataset and/ or parameter setting. In this research, six case studies were reproduced in Microrisk Lab and compared in parallel to DMFit, GInaFiT, IPMP 2013/ GraphPad Prism, Bioinactivation FE, and @Risk, respectively. The estimated and simulated results demonstrated that the performance of Microrisk Lab was statistically equivalent to that of other existing modeling system in most cases. Microrisk Lab allowed for uniform user experience to implement microbial predictive modeling by its friendly interfaces, high-integration, and interconnectivity. It might become a useful tool for the microbial parameter determination and behavior simulation. Non-commercial users could freely access this application at https://microrisklab.shinyapps.io/english/.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Primary Predictive Models of Microbial Growth;Basic Protocols in Predictive Food Microbiology;2023