Rapid host response to an infection with Coronavirus. Study of transcriptional responses with Porcine Epidemic Diarrhea Virus

Author:

Hou Wei,Liu Fei,van der Poel Wim H.M.,Hulst Marcel M.

Abstract

AbstractThe transcriptional response in Vero cells (ATCC®CCL-81) infected with the coronavirus Porcine Epidemic Diarrhea Virus (PEDV) was measured by RNAseq analysis 4 and 6 hours after infection. Differential expressed genes (DEGs) in PEDV infected cells were compared to DEGs responding in Vero cells infected with Mammalian Orthoreovirus (MRV). Functional analysis of MRV and PEDV DEGs showed that MRV increased the expression level of several cytokines and chemokines (e.g. IL6, CXCL10, IL1A, CXCL8 [alias IL8]) and antiviral genes (e.g. IFI44, IFIT1, MX1, OASL), whereas for PEDV no enhanced expression was observed for these “hallmark” antiviral and immune effector genes. Pathway and Gene Ontology “enrichment analysis” revealed that PEDV infection did not stimulate expression of genes able to activate an acquired immune response, whereas MRV did so within 6h. Instead, PEDV down-regulated the expression of a set of zinc finger proteins with putative antiviral activity and enhanced the expression of the transmembrane serine protease gene TMPRSS13 (alias MSPL) to support its own infection by virus-cell membrane fusion (Shi et al, 2017, Viruses, 9(5):114). PEDV also down-regulated expression of Ectodysplasin A, a cytokine of the TNF-family able to activate the canonical NFKB-pathway responsible for transcription of inflammatory genes like IL1B, TNF, CXCL8 and PTGS2. The only 2 cytokine genes found up-regulated by PEDV were Cardiotrophin-1, an IL6-type cytokine with pleiotropic functions on different tissues and types of cells, and Endothelin 2, a neuroactive peptide with vasoconstrictive properties. Furthermore, by comprehensive datamining in biological and chemical databases and consulting related literature we identified sets of PEDV-response genes with potential to influence i) the metabolism of biogenic amines (e.g. histamine), ii) the formation of cilia and “synaptic clefts” between cells, iii) epithelial mucus production, iv) platelets activation, and v) physiological processes in the body regulated by androgenic hormones (like blood pressure, salt/water balance and energy homeostasis). The information in this study describing a “very early” response of epithelial cells to an infection with a coronavirus may provide pharmacologists, immunological and medical specialists additional insights in the underlying mechanisms of coronavirus associated severe clinical symptoms including those induced by SARS-CoV-2. This may help them to fine-tune therapeutic treatments and apply specific approved drugs to treat COVID-19 patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3