Evaluating the Simple Arrhenius Equation for the Temperature Dependence of Complex Developmental Processes

Author:

Crapse Joseph,Pappireddi Nishant,Gupta Meera,Shvartsman Stanislav Y.,Wieschaus Eric,Wühr MartinORCID

Abstract

SummaryThe famous Arrhenius equation is well motivated to describe the temperature dependence of chemical reactions but has also been used for complicated biological processes. Here, we evaluate how well the simple Arrhenius equation predicts complex multistep biological processes, using frog and fruit fly embryogenesis as two canonical models. We find the Arrhenius equation provides a good approximation for the temperature dependence of embryogenesis, even though individual developmental stages scale differently with temperature. At low and high temperatures, however, we observed significant departures from idealized Arrhenius Law behavior. When we model multistep reactions of idealized chemical networks we are unable to generate comparable deviations from linearity. In contrast, we find the single enzyme GAPDH shows non-linearity in the Arrhenius plot similar to our observations of embryonic development. Thus, we find that complex embryonic development can be well approximated by the simple Arrhenius Law and propose that the observed departure from this law results primarily from non-idealized individual steps rather than the complexity of the system.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates;Annu. Rev. Biophys,2020

2. On the Temperature Dependence of Enzyme-Catalyzed Rates

3. Quantitative relationship between the rate a reaction proceed and its temperature;J Phys Chem,1889

4. Ball, D.W. , and Key, J.A. (2014). Intermolecular Forces. In Introductory Chemistry - 1st Canadian Edition, (BCcampus), p.

5. Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae;Cell Reports,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3