Abstract
AbstractKIF1A Associated Neurological Disorder (KAND) encompasses a recently identified group of rare neurodegenerative conditions caused by variants in KIF1A, a member of the kinesin-3 family of microtubule (MT) motor proteins. Here we characterize the natural history of KAND in 117 individuals using a combination of caregiver or self-reported medical history, a standardized measure of adaptive behavior, clinical records, and neuropathology. We developed a heuristic severity score using a weighted sum of common symptoms to assess disease severity. Focusing on 100 individuals, we compared the average clinical severity score for each variant with in silico predictions of deleteriousness and location in the protein. We found increased severity is strongly associated with variants occurring in regions involved with ATP and MT-binding: the P-loop, switch I, and switch II. For a subset of identified variants, we generated recombinant mutant proteins which we used to assess transport in vivo by assessing neurite tip accumulation, and to assess MT binding, motor velocity, and processivity using total internal reflection fluorescence microscopy. We find all patient variants result in defects in transport, and describe three classes of protein dysfunction: reduced MT binding, reduced velocity and processivity, and increased non-motile rigor MT binding. The molecular rigor phenotype is consistently associated with the most severe clinical phenotype, while reduced binding is associated with milder clinical phenotypes. Our findings suggest the clinical phenotypic heterogeneity in KAND likely reflects and parallels diverse molecular phenotypes. We propose a new way to describe KAND subtypes to better capture the breadth of disease severity.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献