Cerebrospinal fluid (CSF) boosts metabolism and virulence expression factors in Acinetobacter baumannii

Author:

Martinez Jasmine,Razo-Gutierrez Chelsea,Le Casin,Courville Robert,Pimentel Camila,Liu Christine,Fuang Sammie E.,Vila Alejandro J.,Shahrestani Parvin,Jimenez VeronicaORCID,Tolmasky Marcelo E.,Becka Scott A.,Papp-Wallace Krisztina M.ORCID,Bonomo Robert A.,Soler-Bistue Alfonso,Sieira Rodrigo,Ramirez Maria Soledad

Abstract

AbstractIn a recent report by the Centers for Disease Control and Prevention (CDC), multidrug resistant (MDR) Acinetobacter baumannii is a pathogen described as an “urgent threat”. Infection with this bacterium manifests as different diseases such as community and nosocomial pneumonia, bloodstream infections, endocarditis, urinary tract, wound infections, burn infections, skin and soft tissue infections, and meningitis. In particular, nosocomial meningitis, a common complication of neurosurgery caused by extensively-drug resistant (XDR) A. baumannii, is extremely challenging to manage. Therefore, it is necessary to identify signals, such as exposure to cerebrospinal fluid (CSF), that trigger expression of virulence factors that are associated with the successful establishment and progress of this infection. While a hypervirulent A. baumannii strain did not show changes in its transcriptome when incubated in the presence of CSF, a low-virulence isolate showed significant differences in gene expression and phenotypic traits. Exposure to 4% CSF caused increased expression of virulence factors such as fimbriae, pilins, and iron chelators, and virulence as determined in various model systems. Furthermore, although CSF’s presence did not enhance bacterial growth, it was associated with an increase of expression of genes encoding transcription, translation, and the ATP synthesis machinery. Experiments to identify the active CSF component pointed to human serum albumin (HSA).ImportanceAcinetobacter baumannii, notorious for its multidrug resistant phenotype, overcomes nutrient deprived and desiccated conditions through its metabolic flexibility, pathogenic and physiological adaptability. Although this pathogen is commonly associated with respiratory infections, there have been a considerable amount of cases of A. baumannii bacterial meningitis. These infections are usually post-neurological surgery complications associated with high mortality rates ranging from 40 to 70%. This work describes interactions that may occur during A. baumannii infection of human cerebrospinal fluid (CSF). A. baumannii’s displays capabilities to persist and thrive in a nutrient-limited environment, which also triggers the expression of virulence factors. This work also further explores A. baumannii’s utilization of an essential component within CSF to trigger enhanced expression of genes associated with its pathoadaptibility in this environment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3