Abstract
Molecular catch bonds are ubiquitous in biology and well-studied in the context of leukocyte extravasion1, cellular mechanosensing2,3, and urinary tract infection4. Unlike normal (slip) bonds, catch bonds strengthen under tension. The current paradigm is that this remarkable ability enables cells to increase their adhesion in fast fluid flows1,4, and hence provides ‘strength-on-demand’. Recently, cytoskeletal crosslinkers have been discovered that also display catch bonding5–8. It has been suggested that they strengthen cells, following the strength-on-demand paradigm9,10. However, catch bonds tend to be weaker compared to regular (slip) bonds because they have cryptic binding sites that are often inactive11–13. Therefore, the role of catch bonding in the cytoskeleton remains unclear. Here we reconstitute cytoskeletal actin networks to show that catch bonds render them both stronger and more deformable than slip bonds, even though the bonds themselves are weaker. We develop a model to show that weak binding allows the catch bonds to mitigate crack initiation by moving from low- to high-tension areas in response to mechanical loading. By contrast, slip bonds remain trapped in stress-free areas. We therefore propose that the mechanism of catch bonding is typified by dissociation-on-demand rather than strength-on-demand. Dissociation-on-demand can explain how both cytolinkers5–8,10,14,15 and adhesins1,2,4,12,16–20 exploit continuous redistribution to combine mechanical strength with the adaptability required for movement and proliferation21. Our findings provide a new perspective on diseases where catch bonding is compromised11,12 such as kidney focal segmental glomerulosclerosis22,23, caused by the α-actinin-4 mutant studied here. Moreover, catch bonds provide a route towards creating life-like materials that combine strength with deformability24.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献