Nanopore sequencing reveals full-length Tropomyosin 1 isoforms and their regulation by RNA binding proteins during rat heart development

Author:

Cao Jun,Routh Andrew L.ORCID,Kuyumcu-Martinez Muge N.ORCID

Abstract

ABSTRACTAlternative splicing (AS) contributes to the diversity of the proteome by producing multiple isoforms from a single gene. Although short-read RNA sequencing methods have been the gold standard for determining AS patterns of genes, they have a difficulty in defining full length mRNA isoforms assembled using different exon combinations. Tropomyosin 1 (TPM1) is an actin binding protein required for cytoskeletal functions in non-muscle cells and for contraction in muscle cells. Tpm1 undergoes AS regulation to generate muscle versus non-muscle TPM1 protein isoforms with distinct physiological functions. It is unclear which full length Tpm1 isoforms are produced via AS and how they are regulated during heart development. To address these, we utilized nanopore long-read cDNA sequencing without gene-specific PCR amplification. In rat hearts, we identified full length Tpm1 isoforms composed of distinct exons with specific exon linkages. We showed that Tpm1 undergoes AS transitions during embryonic heart development such that muscle-specific exons are connected together generating predominantly muscle specific Tpm1 isoforms in adult hearts. We found that the RNA binding protein RBFOX2 controls AS of rat Tpm1 exon 6a, which is important for cooperative actin binding. Furthermore, RBFOX2 regulates Tpm1 AS of exon 6a antagonistically to the RNA binding protein PTBP1. In sum, we defined full length Tpm1 isoforms with different exon combinations that are tightly regulated during cardiac development and provided insights into regulation of Tpm1 AS by RNA binding proteins. Our results demonstrate that nanopore sequencing is an excellent tool to determine fulllength AS variants of muscle enriched genes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3