Using iCn3D and the World Wide Web for structure-based collaborative research: Analyzing molecular interactions at the root of COVID-19

Author:

Youkharibache PhilippeORCID,Cachau RaulORCID,Madej Tom,Wang Jiyao

Abstract

ABSTRACTThe COVID-19 pandemic took us ill-prepared and tackling the many challenges it poses in a timely manner requires world-wide collaboration. Our ability to study the SARS-COV-2 virus and its interactions with its human host in molecular terms efficiently and collaboratively becomes indispensable and mission-critical in the race to develop vaccines, drugs, and neutralizing antibodies. There is already a significant corpus of 3D structures related to SARS and MERS coronaviruses, and the rapid generation of new structures demands the use of efficient tools to expedite the sharing of structural analyses and molecular designs and convey them in their native 3D context in sync with sequence data and annotations. We developed iCn3D (pronounced “I see in 3D”) 1 to take full advantage of web technologies and allow scientists of different backgrounds to perform and share sequence-structure analyses over the Internet and engage in collaborations through a simple mechanism of exchanging “lifelong” web links (URLs). This approach solves the very old problem of “sharing of molecular scenes” in a reliable and convenient manner. iCn3D links are sharable over the Internet and make data and entire analyses findable, accessible, and reproducible, with various levels of interoperability. Links and underlying data are FAIR 2 and can be embedded in preprints and papers, bringing a 3D live and interactive dimension to a world of text and static images used in current publications, eliminating at the same time the need for arcane supplemental materials. This paper exemplifies iCn3D capabilities in visualization, analysis, and sharing of COVID-19 related structures, sequence variability, and molecular interactions.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3