Genetic background modifies vulnerability to glaucoma related phenotypes in Lmx1b mutant mice

Author:

Tolman NG,Macalinao DG,Kearney AL,MacNicoll KH,Montgomery CL,de Vries WN,Jackson IJORCID,Cross SHORCID,Kizhatil KORCID,Nair KS,John SWM

Abstract

AbstractVariants in the LIM homeobox transcription factor 1-beta gene (LMX1B) predispose individuals to elevated intraocular pressure (IOP), a key risk factor for glaucoma. However, the effect of LMX1B mutations varies widely between individuals. To better understand mechanisms underlying LMX1B-related phenotypes and individual differences, we backcrossed the Lmx1bV265D (also known as Lmx1bIcst) allele onto the C57BL/6J (B6), 129/Sj (129), C3A/BLiA-Pde6b+/J (C3H), and DBA/2J-Gpnmb+ (D2-G) strain backgrounds. Strain background had a significant effect on the onset and severity of ocular phenotypes in Lmx1bV265D/+ mutant mice. Mice of the B6 background were the most susceptible to developing elevated IOP, severe anterior segment developmental anomalies (including malformed eccentric pupils, iridocorneal strands, and corneal abnormalities) and glaucomatous nerve damage. In contrast, Lmx1bV265D mice of the 129 background were the most resistant to developing anterior segment abnormalities, had less severe IOP elevation than B6 mutants at young ages, and showed no detectable nerve damage. To identify genetic modifiers of susceptibility to Lmx1bV265D-induced glaucoma-associated phenotypes, we performed a mapping cross between mice of the B6 (susceptible) and 129 (resistant) backgrounds. We identified a modifier locus on Chromosome 18, with the 129 allele(s) substantially lessening severity of ocular phenotypes, as confirmed by congenic analysis. By demonstrating a clear effect of genetic background in modulating Lmx1b-induced phenotypes, by providing a panel of strains with different phenotypic severities and by identifying a modifier locus, this study lays a foundation for better understanding the roles of LMX1B in glaucoma with the goal of developing new treatments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3