Changes in salt-marsh vegetation weakly affect top consumers of aquatic food webs

Author:

Denis LafageORCID,Alexandre Carpentier,Duhamel Sylvain,Dupuy Christine,Feunteun Eric,Lesourd Sandric,Julien Pétillon

Abstract

AbstractSalt marshes are under high, and increasing, anthropogenic pressures that have notably been reported to affect the diet of several fish species, probably resulting in nursery function alterations. Most of the previous studies in Europe were yet based on gut content analysis of fish, which can be considered a snapshot of immediate impacts of salt-marsh changes, and hardly of long-term effects of disturbances. In this study, we investigated the impact of vegetation type (resulting from both plant invasion and sheep grazing) by assessing trophic network (and especially fish diet and position) of different salt-marsh conditions. Replicated samples of basic sources (particular organic matter and microphytobenthos), dominant vegetation, potential aquatic and terrestrial prey and fish of 3 main species were taken during summer 2010 in two bays from Western France (Mont -Saint-Michel Bay and Seine Estuary) and analysed using C and N stable isotope compositions. All response variables tested (overall trophic organization, trophic niche and trophic position) provided consistent results, i.e. a dominant site effect and a weaker effect of vegetation type. Site effect was attributed to differences in anthropogenic Nitrogen inputs and tidal regime between the two bays, with more marine signatures associated with a higher frequency of flooding events. A second hypothesis is that E. acuta, which has recently totally replaced typical salt-marsh vegetation in Mont Saint-Michel Bay strongly impacted the nursery function. The trophic status of dominant fish species was unchanged by local salt-marsh vegetation, and considered consistent with their diet, i.e. high for predatory species (the sea bass Dicentrarchus labrax and the common goby Pomatoschistus microps) and lower for biofilm grazing species (the thinlip mullet Chelon ramada). This study finally highlights the relevance of stable isotopes analyses for assessing long-term and integrative effects of changes in vegetation resulting from human disturbances in salt marshes.HighlightsCross-ecosystem subsidies are of high functional importance, notably in salt marshesFish are vectors of exchanges, most European studies being based on their gut contentUsing stable isotopes we analysed the effect of surrounding vegetation on food websSurprisingly we found weak vegetation and strong site effects on all metricsNitrogen inputs, site accessibility and loss of nursery function can explain this factAbstract Figure

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. Spread of exotic cordgrasses and hybrids (Spartina sp.) in the tidal marshes of San Francisco Bay, California, USA;Biol. Invasions,2004

2. Dependence of Fishery Species on Salt Marshes: The Role of Food and Refuge

3. Sheep grazing as management tool in Western European saltmarshes;C. R. Biol.,2003

4. Feeding ecology of Liza spp. in a tidal flat: Evidence of the importance of primary production (biofilm) and associated meiofauna. J. Sea Res;Trophic significance of microbial biofilm in tidal flats,2014

5. European intertidal marshes: a review of their habitat functioning and value for aquatic organisms;Mar. Ecol. Prog. Ser.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3