Unfolding of the chromatin fiber driven by overexpression of bridging factors

Author:

Malhotra Isha,Oyarzún Bernardo,Mognetti Bortolo MatteoORCID

Abstract

AbstractNuclear molecules control the functional properties of the chromatin fiber by shaping its morphological properties. The biophysical mechanisms controlling how bridging molecules compactify the chromatin are a matter of debate. On the one side, bridging molecules could cross-link faraway sites and fold the fiber through the formation of loops. Interacting bridging molecules could also mediate long-range attractions by first tagging different locations of the fiber and then undergoing microphase separation. Using a coarse-grained model and Monte Carlo simulations, we study the conditions leading to compact configurations both for interacting and non-interacting bridging molecules. In the second case, we report on an unfolding transition at high densities of the bridging molecules. We clarify how this transition, which disappears for interacting bridging molecules, is universal and controlled by entropic terms. In general, chains are more compact in the case of interacting bridging molecules since, in this case, interactions are not valence-limited. However, this result is conditional on the ability of our simulation methodology to relax the system towards its ground state. In particular, we clarify how, unless using reaction dynamics that change the length of a loop in a single step, the system is prone to remain trapped in metastable, compact configurations featuring long loops.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3