Battle with COVID-19 Under Partial to Zero Lockdowns in India

Author:

Babbar Sakshi,Gilotra Arnauv

Abstract

AbstractThe cumulative records of COVID-19 are rapidly increasing day by day in India. The key question prevailing in minds of all is when will it get over? There have been several attempts in literature to address this question using time series, Machine learning, epidemiological and statistical models. However due to high level of uncertainty in the domain and lack of big historical data, the performance of these models suffer. In this work, we present an intuitive model that uses a combination of epidemiological model (SEIR) and mathematical curve fitting method to forecast spread of COVID-19 in India in future. By using the combination model, we get characteristics benefits of these models under limited knowledge and historical data about the novel Coronavirus. Instead of fixing parameters of the standard SEIR model before simulation, we propose to learn them from the real data set consisting of progression of Corona spread in India. The learning of model is carefully designed by understanding that available data set consist of records of cases under full, partial to zero lockdown phases in India. Hence, we make two separate predictions by our propose model. One under the situation of full lockdown in India and, other with partial to zero restrictions in India. With continued strict lockdown after May 03, 2020, our model predicted May 14, 2020 as the date of peak of Coronavirus in India. However, in current scenario of partial to zero lockdown phase in India, the peak of Coronavirus cases is predicted to be July 31, 2020. These two predictions presented in this work provide awareness among citizens of India on importance of control measures such as full, partial and zero lockdown and the spread of Corona disease infection rate. In addition to this, it is a beneficial study for the government of India to plan the things ahead.

Publisher

Cold Spring Harbor Laboratory

Reference13 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Frequency of words and Word Cloud from Astrological sentiments using NLP;International Journal of Scientific Research in Science and Technology;2021-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3