Optically pumped magnetometers disclose magnetic field components of the muscular action potential.

Author:

Broser PhilipORCID,Middelmann Thomas,Sometti Davide,Braun Christoph

Abstract

Aim: To track the magnetic field generated by the propagating muscle action potential (MAP). Method: In this prospective, proof of principle study, the magnetic activity of the intrinsic foot muscle after electric stimulation of the tibial nerve was measured using optically pumped magnetometers (OPMs). A classical biophysical electric dipole model of the propagating MAP was implemented to model the source of the data. Results: The signal profile generated by the activity of the intrinsic foot muscles was measured by four OPM devices. Three devices were located above the same muscle to compare the direction and the strength of the magnetic signal while propagating along the muscle. Interpretation: OPM devices allow for a new, non-invasive way to study MAP patterns. Since magnetic fields are less altered by the tissue surrounding the dipole source compared to electric activity, a precise analysis of the spatial characteristics and temporal dynamics of the MAP is possible. The classic electric dipole model explains major but not all aspects of the magnetic field. The field has longitudinal components generated by intrinsic structures of the muscle fibre. By understanding these magnetic components, new methods could be developed to analyse the muscular signal transduction pathway in greater detail.

Publisher

Cold Spring Harbor Laboratory

Reference20 articles.

1. Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers;Phys. Med. Biol,2015

2. A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers

3. Optically pumped magnetometers for magnetomyography to study the innervation of the hand;IEEE Trans. Neural. Syst. Rehabil. Eng,2018

4. Elektroneurograsche und elektromyographische Diagnostik in der Neuropaediatrie [Electromyography and Electro-neurography in the Neuropediatric Diagniostic Process];Klinische Neurophysiologie,2020

5. Four-channel optically pumped atomic magnetometer for magnetoencephalography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3