Detecting oncogenic selection through biased allele retention in The Cancer Genome Atlas

Author:

Luft JulietORCID,Young Robert S.,Meynert Alison M.ORCID,Taylor Martin S.ORCID

Abstract

AbstractBackgroundThe loss of genetic diversity in segments over a genome (loss-of-heterozygosity, LOH) is a common occurrence in many types of cancer. By analysing patterns of preferential allelic retention during LOH in approximately 10,000 cancer samples from The Cancer Genome Atlas (TCGA), we sought to systematically identify genetic polymorphisms currently segregating in the human population that are preferentially selected for, or against during cancer development.ResultsExperimental batch effects and cross-sample contamination were found to be substantial confounders in this widely used and well studied dataset. To mitigate these we developed a generally applicable classifier (GenomeArtiFinder) to quantify contamination and other abnormalities. We provide these results as a resource to aid further analysis of TCGA whole exome sequencing data. In total, 1,678 pairs of samples (14.7%) were found to be contaminated or affected by systematic experimental error. After filtering, our analysis of LOH revealed an overall trend for biased retention of cancer-associated risk alleles previously identified by genome wide association studies. Analysis of predicted damaging germline variants identified highly significant oncogenic selection for recessive tumour suppressor alleles. These are enriched for biological pathways involved in genome maintenance and stability.ConclusionsOur results identified predicted damaging germline variants in genes responsible for the repair of DNA strand breaks and homologous repair as the most common targets of allele biased LOH. This suggests a ratchet-like process where heterozygous germline mutations in these genes reduce the efficacy of DNA double-strand break repair, increasing the likelihood of a second hit at the locus removing the wild-type allele and triggering an oncogenic mutator phenotype.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perspectives on Allele-Specific Expression;Annual Review of Biomedical Data Science;2021-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3