Large-scale curvature sensing by epithelial monolayers depends on active cell mechanics and nuclear mechanoadaptation

Author:

Luciano Marine,Xue Shi-Lei,De Vos Winnok H.ORCID,Morata Lorena RedondoORCID,Surin MathieuORCID,Lafont FrankORCID,Hannezo EdouardORCID,Gabriele SylvainORCID

Abstract

AbstractWhile many tissues fold in vivo in a highly reproducible and robust way, epithelial folds remain difficult to reproduce in vitro, so that the effects and underlying mechanisms of local curvature on the epithelial tissue remains unclear. Here, we photoreticulated polyacrylamide hydrogels though an optical photomask to create corrugated hydrogels with isotropic wavy patterns, allowed us to show that concave and convex curvatures affect cellular and nuclear shape. By culturing MDCK epithelial cells at confluency on corrugated hydrogels, we showed that the substrate curvature leads to thicker epithelial zones in the valleys and thinner ones on the crest, as well as corresponding density, which can be generically explained by a simple 2D vertex model, leading us to hypothesize that curvature sensing could arise from resulting density/thickness changes. Additionally, positive and negative local curvatures lead to significant modulations of the nuclear morphology and positioning, which can also be well-explained by an extension of vertex models taking into account membrane-nucleus interactions, where thickness/density modulation generically translate into the corresponding changes in nuclear aspect ratio and position, as seen in the data. Consequently, we find that the spatial distribution of Yes associated proteins (YAP), the main transcriptional effector of the Hippo signaling pathway, is modulated in folded epithelial tissues according to the resulting thickness modulation, an effect that disappears at high cell density. Finally, we showed that these deformations are also associated with changes of A-type and B-type lamin expression, significant chromatin condensation and to lower cell proliferation rate. These findings show that active cell mechanics and nuclear mechanoadaptation are key players of the mechanistic regulation of epithelial monolayers to substrate curvature, with potential application for a number of in vivo situations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3