Abstract
AbstractTo distinguish between somatic stimuli, the primary somatosensory cortex should process dissimilar stimuli with distinct patterns of neuronal activation. Two-photon calcium imaging permits simultaneous optical recording of sensory evoked activity in hundreds of cortical neurons during varied sensory stimulation. Hence, it allows a visualization of patterns of activity in individual neurons and local cortical networks in response to distinct stimulation. Here, flavoprotein autofluorescence imaging was used to map the somatosensory cortex of anaesthetized C57BL/6 mice, and in vivo two-photon Ca2+ imaging was used to define patterns of neuronal activation during mechanical stimulation of the contralateral forelimb or hindlimb at various frequencies (3, 10, 100, 200, and 300 Hz). The data revealed that neurons within the limb associated somatosensory cortex exhibit stimulus-specific patterns of activity. Subsets of neurons were found to have sensory-evoked activity that is either primarily responsive to single stimulus frequencies or broadly responsive to multiple frequencies of limb movement. High frequency stimuli were shown to elicit more activation across the population, with a greater percentage of the population responding and greater percentage of cells with high amplitude responses. Stimulus-evoked cell-cell correlations within these neuronal networks varied as a function of frequency of stimulation, such that each stimulus elicited a distinct pattern that was more consistent across multiple trials of the same stimulus compared to trials at different frequencies of stimulation. The variation in cortical response to these artificial stimuli can thus be represented by the population pattern of supra-threshold Ca2+ transients, the magnitude and temporal properties of the evoked activity, and the structure of the stimulus-evoked correlation between responsive neurons.
Publisher
Cold Spring Harbor Laboratory