BRG1 promotes transcriptional patterns that are permissive to proliferation in cancer cells

Author:

Giles Katherine A.ORCID,Gould Cathryn M.,Achinger-Kawecka JoannaORCID,Page Scott G.,Kafer GeorgiaORCID,Luu Phuc-LoiORCID,Cesare Anthony J.ORCID,Clark Susan J.ORCID,Taberlay Phillippa C.ORCID

Abstract

ABSTRACTBackgroundBRG1 (encoded bySMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programs and cancer cell behaviour.ResultsOur investigation ofSMARCA4revealed that BRG1 is universally overexpressed in 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programs. Unexpectedly, depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2,PCAT1andVAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the oncogenic transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest.ConclusionsOur data have revealed that BRG1 has capacity to drive oncogenesis by coordinating oncogenic pathways dependent on BRG1 for proliferation, cell cycle progression and DNA replication.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3