Endocrine disrupting chemicals and COVID-19 relationships: a computational systems biology approach

Author:

Wu Qier,Coumoul Xavier,Grandjean Philippe,Barouki Robert,Audouze KarineORCID

Abstract

AbstractBackgroundPatients at high risk of severe forms of COVID-19 frequently suffer from chronic diseases, but other risk factors may also play a role. Environmental stressors, such as endocrine disrupting chemicals (EDCs), can contribute to certain chronic diseases and might aggravate the course of COVID-19.ObjectivesTo explore putative links between EDCs and COVID-19 severity, an integrative systems biology approach was constructed and applied.MethodsAs a first step, relevant data sets were compiled from major data sources. Biological associations of major EDCs to proteins were extracted from the CompTox database. Associations between proteins and diseases known as important COVID-19 comorbidities were obtained from the GeneCards and DisGeNET databases. Based on these data, we developed a tripartite network (EDCs-proteins-diseases) and used it to identify proteins overlapping between the EDCs and the diseases. Signaling pathways for common proteins were then investigated by over-representation analysis.ResultsWe found several statistically significant pathways that may be dysregulated by EDCs and that may also be involved in COVID-19 severity. The Th17 and the AGE/RAGE signaling pathways were particularly promising.ConclusionsPathways were identified as possible targets of EDCs and as contributors to COVID-19 severity, thereby highlighting possible links between exposure to environmental chemicals and disease development. This study also documents the application of computational systems biology methods as a relevant approach to increase the understanding of molecular mechanisms linking EDCs and human diseases, thereby contributing to toxicology prediction.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3