Free fatty-acid receptor 4 inhibitory signaling in delta cells regulates islet hormone secretion in mice

Author:

Croze Marine L.,Flisher Marcus F.,Guillaume Arthur,Tremblay Caroline,Noguchi Glyn M.ORCID,Granziera Sabrina,Vivot KevinORCID,Castillo Vincent C.,Campbell Scott A.,Ghislain JulienORCID,Huising Mark O.ORCID,Poitout VincentORCID

Abstract

ABSTRACTObjectiveMaintenance of glucose homeostasis requires the precise regulation of hormone secretion from the endocrine pancreas. Free fatty-acid receptor 4 (FFAR4/GPR120) is a G protein-coupled receptor whose activation in islets of Langerhans promotes insulin and glucagon secretion and inhibits somatostatin secretion. However, the contribution of individual islet cell types (α, β, and δ cells) to the insulinotropic and glucagonotropic effects of GPR120 remains unclear. As gpr120 mRNA is enriched in somatostatin-secreting δ cells, we hypothesized that GPR120 activation stimulates insulin and glucagon secretion via inhibition of somatostatin release.MethodsGlucose tolerance tests were performed in mice after administration of the selective GPR120 agonist Compound A. Insulin, glucagon and somatostatin secretion were measured in static incubations of isolated mouse islets in response to endogenous (ω-3 polyunsaturated fatty acids) and/or pharmacological (Compound A and AZ-13581837) GPR120 agonists. The effect of Compound A on hormone secretion was tested further in islets isolated from mice with global or somatostatin cell-specific knockout of gpr120. Gpr120 expression was assessed in pancreatic sections by RNA in situ hybridization. Cyclic AMP (cAMP) and calcium dynamics in response to pharmacological GPR120 agonists were measured specifically in α, β and δ cells in intact islets using cAMPER and GCaMP6 reporter mice, respectively.ResultsAcute exposure to Compound A increased glucose tolerance and circulating insulin and glucagon levels in vivo. Endogenous and/or pharmacological and GPR120 agonists reduced somatostatin secretion in isolated islets and concomitantly demonstrated dose-dependent potentiation of glucose-stimulated insulin secretion and arginine-stimulated glucagon secretion. Gpr120 was enriched in δ cells. Pharmacological GPR120 agonists reduced cAMP and calcium levels in δ cells but increased these signals in α and β cells. Compound A-mediated inhibition of somatostatin secretion was insensitive to pertussis toxin. The effect of Compound A on hormone secretion was completely absent in islets from mice with either global or somatostatin cell-specific deletion of gpr120 and was partially reduced upon blockade of somatostatin receptor signaling by cyclosomatostatin.ConclusionsInhibitory GPR120 signaling in δ cells contributes to both insulin and glucagon secretion in part via mitigating somatostatin release.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3