A high-quality de novo genome assembly from a single parasitoid wasp

Author:

Ye XinhaiORCID,Yang Yi,Tian Zhaoyang,Xu Le,Yu Kaili,Xiao Shan,Yin Chuanlin,Xiong Shijiao,Fang Qi,Chen Hu,Li FeiORCID,Ye GongyinORCID

Abstract

AbstractSequencing and assembling a genome with a single individual have several advantages, such as lower heterozygosity and easier sample preparation. However, the amount of genomic DNA of some small sized organisms might not meet the standard DNA input requirement for current sequencing pipelines. Although few studies sequenced a single small insect with about 100 ng DNA as input, it may still be challenging for many small organisms to obtain such amount of DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality genome assembly for a single haploid male parasitoid wasp (Habrobracon hebetor) using Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting the high level of completeness of the genome assembly. Genome comparison between H. hebetor and its relative Bracon brevicornis shows a high-level genome synteny, indicating the genome of H. hebetor is highly accurate and contiguous. Our study provides an example for de novo assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3