Abstract
AbstractWe live in an increasingly data-driven world, where high-throughput sequencing and mass spectrometry platforms are transforming biology into an information science. This has shifted major challenges in biological research from data generation and processing to interpretation and knowledge translation. However, post-secondary training in bioinformatics, or more generally data science for life scientists, lags behind current demand. In particular, development of accessible, undergraduate data science curricula has potential to improve research and learning outcomes and better prepare students in the life sciences to thrive in public and private sector careers. Here, we describe the Experiential Data science for Undergraduate Cross-Disciplinary Education (EDUCE) initiative, which aims to progressively build data science competency across several years of integrated practice. Through EDUCE, students complete data science modules integrated into required and elective courses augmented with coordinated co-curricular activities. The EDUCE initiative draws on a community of practice consisting of teaching assistants, postdocs, instructors and research faculty from multiple disciplines to overcome several reported barriers to data science for life scientists, including instructor capacity, student prior knowledge, and relevance to discipline-specific problems. Preliminary survey results indicate that even a single module improves student self-reported interest and/or experience in bioinformatics and computer science. Thus, EDUCE provides a flexible and extensible active learning framework for integration of data science curriculum into undergraduate courses and programs across the life sciences.Availability and implementationThe EDUCE teaching and learning framework is accessible at educe-ubc.github.io
Publisher
Cold Spring Harbor Laboratory
Reference25 articles.
1. The information science of microbial ecology
2. Hey T , Tansley S , Tolle K. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research; 2009. Available from: https://www.microsoft.com/en-us/research/publication/fourth-paradigm-data-intensive-scientific-discovery/.
3. Big Data: Astronomical or Genomical?
4. Swift action needed to close the skills gap in bioinformatics
5. A global perspective on evolving bioinformatics and data science training needs
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献