Nucleation-dependent aggregation kinetics of YeastSup35 fragment GNNQQNY

Author:

Burra GunasekharORCID,Maina Mahmoud B.ORCID,Serpell Louise C.ORCID,Thakur Ashwani K.ORCID

Abstract

AbstractAn N-terminal hepta-peptide sequence of yeast prion protein Sup35 with the sequence GNNQQNY serves as an ideal model for structural understanding of amyloid assembly and kinetics. In this study, we used a reproducible solubilisation protocol that allows the generation of homogenous monomeric solution of GNNQQNY to understand the molecular details of its self-assembly mechanism. The aggregation kinetics data show that the GNNQQNY sequences follow nucleation-dependent aggregation kinetics with a critical nucleus of size ~7 monomers and that the size and efficiency of nucleation was found to be inversely related to the reaction temperature. The generated nucleus reduces the thermodynamic energy barrier by acting as a template for further self-assembly and results in highly ordered amyloid fibrils. The fibers grown at different temperatures showed similar Thioflavin T positivity, Congo red binding and β-sheet rich structures displaying a characteristic cross-β diffraction pattern. These aggregates also share morphological and structural identity with those reported earlier. The mature GNNQQNY fibers exerted no significant oxidative stress or cytotoxicity upon incubating with differentiated SHSY5Y cells. To our knowledge, this is the first study to experimentally validate previous predictions based on theoretical and molecular dynamics simulations. These findings will provide the basis for understanding the kinetics and thermodynamics of amyloid nucleation and elongation of amyloidogenic systems associated with many systemic and neurodegenerative diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3