Abstract
ABSTRACTDespite the considerable progress in unraveling the genetic causes of amyotrophic lateral sclerosis (ALS), we do not fully understand the molecular mechanisms underlying the disease. We analyzed genome-wide data involving 78,500 individuals using a polygenic risk score approach to identify the biological pathways and cell types involved in ALS. This data-driven approach identified multiple aspects of the biology underlying the disease that resolved into broader themes, namely neuron projection morphogenesis, membrane trafficking, and signal transduction mediated by ribonucleotides. We also found that genomic risk in ALS maps consistently to GABAergic cortical interneurons and oligodendrocytes, as confirmed in human single-nucleus RNA-seq data. Using two-sample Mendelian randomization, we nominated five differentially expressed genes (ATG16L2, ACSL5, MAP1LC3A, PLXNB2, and SCFD1) within the significant pathways as relevant to ALS. We conclude that the disparate genetic etiologies of this fatal neurological disease converge on a smaller number of final common pathways and cell types.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献